
Abstraction for AoS and SoA Layout in C++

Robert Strzodka∗

Memory access patterns are critical for performance, especially on parallel
architectures such as GPUs. Because of this, the choice between an array-
of-structures (AoS) data layout and a structure-of-arrays (SoA) layout has
a large impact on overall program performance. However, it is not always
obvious which layout will better serve a particular application, and testing
both of them by hand in C++ is tedious because their syntax greatly differs.
Not only is the syntax for defining the container different, but worse, the
syntax for accessing the data within the container is different, leading to
anywhere from tens to thousands of source code changes needed to switch
any given container from the AoS to the SoA layout or vice versa.

This chapter presents an abstraction layer that allows switching between the
AoS and SoA layouts in C++ without having to change the data access syn-
tax. A few changes to the structure and container definitions allow for easy
performance comparison of AoS vs. SoA on existing AoS code. This abstrac-
tion retains the more intuitive AoS syntax (container[index].component)
for data access yet allows switching between the AoS and SoA layouts with
a single template parameter in the container type definition on the CPU
and GPU. In this way, code development becomes independent of the data
layout and performance is improved by choosing the correct layout for the
application’s usage pattern.

A library called ASX (Array of Structs eXtended) that implements this
abstraction layer, together with code examples that execute on both the
CPU and the GPU, can be downloaded from the author’s homepage [8].

∗Max Planck Institut Informatik, 66123 Saarbrücken, Germany

1

1 Introduction

Often our data is not scalar but rather comprises multiple components,
such as the x, y, and z coordinates of a 3D position or velocity vector, the
principle components of a feature vector, or the red, green, and blue color
channels of a pixel. When operating on such multi-valued data, we have
two major choices for the data layout: AoS or SoA. For the AoS layout, we
define the multi-valued structure and assemble many copies of it one after
another in memory. In the case of SoA, we begin with all instances of the
first component, then follow it with all instances of the second component,
etc.

Collections of C++ class instances fall naturally into the AoS pattern,
though this may not necessarily represent the best choice for performance
for a given application (see Section 5.1). Consider the following examples of
these two layouts. The same data is represented in both cases, but because
of the different layout, the memory access patterns during computation are
significantly different.� �
// Array of Structures (AoS)

struct Element {

Type1 comp1;

Type2 comp2;

Type3 comp3;

};

typedef Element AoS_Container[CONT_SIZE];

// Structure of Arrays (SoA)

struct SoA_Container {

Type1 comp1[CONT_SIZE];

Type2 comp2[CONT_SIZE];

Type3 comp3[CONT_SIZE];

};� �
Switching between these two layouts is labor-intensive, as the access syntax
for the two forms differs, as seen below. Alternatively, a third possible
access syntax could be used, which is the standard C++ solution to this
problem: a class hides the data layout from the programmer by turning
every structure component access into a call to a member function, thereby
allowing the class implementation to switch between AoS and SoA layouts
without having to change the access syntax.� �

2

value= container[index]. component; // AoS access

value= container.component[index]; // SoA access

value= container.component(index); // C++ access� �
With the C++ member function access syntax, however, the definition of
every structure (even simple structures with only a few components each)
requires many additional lines of code, especially since the proper treat-
ment of constness requires two access functions for every data member (or,
alternatively, a getter and a setter function for each member):� �
const Type& component(int index) const; // read access

Type& component(int index); // write access� �
Besides the code bloat when defining accessor functions, the standard C++
solution has another problem: the AoS layout allows performing in-place
updates on the container element at a certain index position with the same
functions that are used on singleton elements:� �
Element single; // single element

AoS_Container container; // AoS container

void update(Element& elm) { elm.comp1= elm.comp2; }

update(single); // OK

update(container [5]); // OK� �
With the SoA layout or the standard C++ solution, this is not possible
because the component must be selected first and the index afterwards.
Consequently, in that case two different functions are necessary to perform
the same operation as above:� �
Element single; // single element

Cpp_Container container; // C++ container

void update(Element& elm) { elm.comp1= elm.comp2; }

void update(Cpp_Container& con , int i)

{ con.comp1[i]= con.comp2[i]; }

update(single); // the same operation ...

update(container , 5); // ... but different syntax� �
Of course, this problem can also be solved with more C++ machinery
by defining iterators and passing Cpp Container::iterator(single) and

3

Cpp Container::iterator(container,5) as arguments to functions, how-
ever, this only adds to the code bloat and hardly anyone is willing to im-
plement so many classes for every small data structure. Moreover, many
changes would have to be applied to an existing AoS code before it could
work with this type of C++ solution.

2 Core Method

Our goal is to introduce SoA functionality with minimal changes to the
element and container definitions and without abandoning the more intuitive
AoS syntax container[index].component. In this way it will be easy for
programmers to transition from existing AoS code to a flexible code that
supports both AoS and SoA. As the data access syntax remains the same,
the main additional work required from the programmer is a more flexible
structure definition based on the ASA (array of structs of arrays) coding
pattern.� �
// AoS pattern: concise but restricted to AoS layout

struct Element {

Type1 comp1;

Type2 comp2;

Type3 comp3;

};

typedef Element Container[CONT_SIZE];

// ASA pattern: a bit longer but handles both AoS and SoA

template <ASX::ID t_id= ASX::ID_value >

struct FlexibleElement {

typedef ASX::ASAGroup <Type1 ,t_id > ASX_ASA;

union{ Type1 comp1; ASX_ASA dummy1; };

union{ Type2 comp2; ASX_ASA dummy2; };

union{ Type3 comp3; ASX_ASA dummy3; };

};

typedef FlexibleElement <> Element;

// specify ASX::SOA instead for an SoA container

typedef ASX::Array <FlexibleElement , CONT_SIZE , ASX::AOS >

Container;

// common access syntax: normal AoS code continues to function

Element single= {1, 2, 3}; // OK, no change

Container container; // OK, no change

4

single.comp2= single.comp3; // OK, no change

container [5]. comp3= 2; // OK, no change� �
The layout and behavior of the types Element and Container are exactly the
same no matter whether the AoS pattern or the ASA pattern with AoS lay-
out (parameter ASX::AOS) is used. However, the ASA pattern allows chang-
ing the in-memory data layout to SoA (corresponding to SoA Container in
Section 1) simply by replacing ASX::AOS with ASX::SOA. The normal AoS
access syntax works in either case without any changes as shown above.

For some code, the above change to the container definition is everything
that is required from the programmer. However, sometimes additional code
adjustments are needed. First, references to ASA elements have necessar-
ily different types depending on whether they refer to a single element, a
container element, or possibly both. It is still possible to write a single
function for handling of single element and container element references
similar to the standard AoS solution, but the syntax of references must be
adjusted, see Section 4.1. Second, the above ASA container definition as-
sumes that Type1, which is used in ASX::ASAGroup<...>, is greater than or
equal to Type2 and Type3 in size. The handling of differently-sized compo-
nents, array-valued components and nesting of structures are discussed in
Sections 4.2 through 4.4.

In this article, we focus on the ASA (array of structs of arrays) coding
pattern. The first three examples included in the ASX library (simpleAoS,
simpleSoA, and simpleASA) deal with the simple three-valued structure
from above and allow an easy comparison of a standard AoS solution, a
standard SoA solution and the ASA solution that supports both layouts.
In particular, the transition from the standard AoS solution to the ASA
solution requires only few changes, while the transition from the standard
AoS solution to the standard SoA solution is far more time-consuming even
for this simple structure.

The code above uses the ASX::Array class, which provides static allocation
based on a size that is known at compile-time, i.e., the equivalent of a normal
array in C. All examples using ASX::Array are located in the directory
examples/staticCUDA of the ASX library.

For cases requiring dynamic allocation, the ASX library also provides the
class ASX::Vector, which uses a constructor to allocate memory in a manner
similar to STL vectors. The corresponding examples are located in the

5

directory examples/dynamicCUDA. Section 3.2 discusses the few differences
between ASX::Array and ASX::Vector.

3 Implementation

3.1 Statically Sized Containers

The technical goal of the implementation is to enable the use of the intuitive
AoS syntax container[index].component for both data layouts. Clearly,
using AoS syntax for an AoS layout is simple; the challenge lies in defining
an operator[] such that the AoS syntax can access an SoA container. The
following code explains why this is possible under certain conditions:� �
struct SoA_Container {

Type1 comp1[CONT_SIZE];

Type2 comp2[CONT_SIZE];

Type3 comp3[CONT_SIZE];

};

SoA_Container container; // SoA container

Type3& soa= container.comp3 [5]; // normal SoA syntax

Type3& aos= reinterpret_cast <SoA_Container&>

(container.comp1 [5]). comp3 [0]; // AoS-like� �
The main insight is that soa and aos reference the same value if Type1,
Type2, and Type3 all have the same size in memory, because then it does
not matter in which order the index offset and the structure member offset
are applied. This solves the problem of swapping the order of operator[]

and operator. for the data access on the SoA layout. Now we only need to
hide the ugly typecast in the operator[] function and eliminate the trailing
[0] by giving comp3[0] a fixed name with the help of an anonymous union:� �
struct SoA_Container {

SoA_Container& operator [](int index) { return

reinterpret_cast <SoA_Container &>(comp1[index]); };

union{ Type1 comp1val , comp1[CONT_SIZE]; };

union{ Type2 comp2val , comp2[CONT_SIZE]; };

union{ Type3 comp3val , comp3[CONT_SIZE]; };

};

SoA_Container container; // SoA container

6

Type3& soa= container.comp3 [5]; // normal SoA syntax

Type3& aos= container [5]. comp3val; // normal AoS syntax� �
The last line here does exactly the same as the last line in the previous
listing, except it is much cleaner using normal AoS syntax. Clearly, we can
also access an AoS layout with AoS syntax, so we have achieved our goal of
showing that the syntax can stay the same even though the layout changes.
Only the operator[] function must be defined differently depending on the
layout, and this can be achieved with a template specialization. Although
no further technical tricks are involved in the implementation, the actual
code of ASX::Array is much longer because of the template specialization
and the partial compatibility of the interface with the containers of the STL
library, i.e., many types and query functions are defined.

ASX::Array behaves like a normal array in C and therefore shares its disad-
vantage that the container size CONT SIZE must be a compile-time constant
as well as its advantages that it can be used to allocate on-chip shared mem-
ory in CUDA and that it contains nothing but the user data, so to copy a
ASX::Array to the GPU, we simply invoke cudaMemcpy:� �
typedef ASX::Array <Flex ,CONT_SIZE ,ASX::AOS > Container;

Container host_A , *device_pA;

cudaMalloc (&device_pA , sizeof(host_A));

cudaMemcpy(device_pA , &host_A ,

sizeof(host_A), cudaMemcpyHostToDevice);� �
3.2 Dynamically Sized Containers

When dynamic container sizing is required, ASX::Vector can be used in
place of ASX::Array. It circumvents the static size limitation by defining
an ASX::Array of fixed size (granularity) and then allocating a dynamically
defined number of them. The indexing in the operator[] function becomes
slightly more complicated, but otherwise little changes. This is similar to
the way an STL vector works.

Consequently, as with an STL vector, ASX::Vector itself contains only con-
trol logic and metadata, while the user data is stored at a different address.
Therefore, moving the container between the host and device requires two
copies: one for the metadata and one for the user data, and an adjustment of
the pointer to the user data. The library provides the convenience function
ASX::deepCopyVector for these actions:

7

� �
typedef ASX::Vector <Flex ,GRANULARITY ,ASX::AOS > Container;

Container host_A(CONT_SIZE), *device_pA , *device_pAdata;

cudaMalloc (&device_pA , sizeof(host_A));

cudaMalloc (& device_pAdata , host_A.memory_size ())

ASX:: deepCopyVector(device_pA , device_pAdata ,

&host_A , cudaMemcpyHostToDevice);� �
Note that the container size CONT SIZE in this example can be dynamically
defined. The constant GRANULARITY controls the granularity of the alloca-
tion, or it can be set to zero to use the default setting.

Apart from the above differences, the containers defined by ASX::Array

and ASX::Vector utilize exactly the same syntax as described in the other
sections. Code examples with ASX::Array are located in examples/stat-

icCUDA and with ASX::Vector in examples/dynamicCUDA.

4 ASA in Practice

In the following sections, we discuss some caveats to be aware of when
switching to the ASA pattern as well as support for more complex data
layouts as they appear in practice.

4.1 References to Elements

In standard AoS code, a reference to a singleton element or to an indexed
element in a container always has the type Element&. For the ASA pattern,
these two have different types when an SoA layout is selected: a single
element has its components laid out consecutively in memory, hence the
reference is of type Element&, whereas an element within a container has
its components spread out in memory, requiring the reference to be of type
Container::reference. If an argument to a function could be either a
singleton element or an indexed container element, then a templated type
for that argument is required.� �
template <ASX::ID t_id >

void update(FlexibleElement <t_id >& elm)

{ elm.comp1= elm.comp2; } // OK, no change

Element single= {1, 2, 3};

8

Container container;

Element& refSE= single; // OK, no change

Container :: reference refSE= single; // Type error

Element& refCE= container [5]; // Type error

Container :: reference refCE= container [5]; // OK, changed

update(single); // OK, no change

update(container [5]); // OK, no change� �
Therefore, when transitioning from AoS code to ASA code, we need to
replace Element& by Container::reference wherever it refers to a con-
tainer element, and element references in function parameters must become
template types if both single and container elements may be passed. The
function calls themselves do not need to be changed, because the compiler
deduces the corresponding template instantiation automatically from the
passed parameter.

Besides the new container definition, the different treatment of references are
the only changes that are necessary to turn the original AoS code simpleAoS
into the flexible ASA code simpleASA in the example folder of the ASX
library.

4.2 Components of Different Sizes

If the structure components have different sizes, they should be grouped such
that the component groups have the same or at least similar sizes. While
this sort of grouping is not strictly necessary, it is advisable, as it benefits
performance and minimizes the memory footprint.� �
// AoS pattern: concise but restricted to AoS layout

struct Element {

float c1;

short c2[2];

double c3;

};

typedef Element Container[CONT_SIZE];

// ASA pattern: a bit longer but handles both AoS and SoA

template <ASX::ID t_id= ASX::ID_value >

struct FlexibleElement {

9

typedef ASX::ASAGroup <double ,t_id > ASX_ASA;

union{struct{float c1; short c2 [2];}; ASX_ASA dummy1 ;};

union{double c3; ASX_ASA dummy3 ;};

};

typedef FlexibleElement <> Element;

typedef ASX::Array <FlexibleElement , CONT_SIZE ,

ASX::AOS > Container; // ASX::SOA for an SoA container

Container container;

container [5].c3= 2; // OK, no change� �
The above code shows the two critical code features that must be present
in every flexible structure definition.

• The structure must contain a typedef ASX::ASAGroup<GroupType,t -

id> ASX ASA, where the user chosen type GroupType defines the group-
ing size. The size of each component group must be smaller or equal
than the grouping size.
• All components must be a member of a component group. Each com-

ponent group must be embedded in an anonymous union, which in-
cludes a dummy component of type ASX ASA. Memory is wasted if the
component groups have different sizes.

Grouping of components within a union should be performed with an anony-
mous struct ; otherwise, the grouped components (c1 and c2 in the example
above) would occupy the same memory and could not be used simultane-
ously. Most compilers support this use of an anonymous structure, although
it is not part of the C++ standard. If this is not supported, a normal named
structure can be used instead, however, then this name has also to appear
in the access syntax.

Note that in the example above, had we required just one element of type
short (i.e., if float c1 were grouped with short c2 rather than short

c2[2]), then both the AoS and the ASA code would still execute correctly,
even though the elements in the group would have different sizes. Moreover,
the overall size of the container would not change in either case: for the
AoS pattern, this is because of data alignment by the compiler; for the ASA
pattern, it is because of the explicit alignment according to the grouping
size. The grouping of differently-sized components is demonstrated in more
detail in the example groupingASA in the ASX library.

10

4.3 Array-Valued Container

In the previous example, we have already used an array of components
(shorts), however, the array components were located in the same group,
so they are not separated in memory if we switch to the SoA layout. If
we want to put the array components into different groups then we must
use a different syntax. In the simplest case we want a large array-valued
container with flexible layout. This is achieved with the provided class
ASX::FlexibleArray, which interacts with the container class ASX::Array
in almost the same way as the user defined structures FlexibleElement in
the examples before, here we merely need an additional ::TTypeASA because
that is how C++ supports template typedefs.� �
// AoS pattern: concise but restricted to AoS layout

typedef float Element[ARR_SIZE];

typedef Element Container[CONT_SIZE];

// ASA pattern: a bit longer but handles both AoS and SoA

typedef ASX:: FlexibleArray <float , ARR_SIZE > FlexElement;

typedef FlexElement ::TTypeASA <> Element;

typedef ASX::Array <FlexElement ::TTypeASA , CONT_SIZE ,

ASX::AOS > Container; // ASX::SOA for an SoA container

Container container;

container [5][1]= 2; // OK, no change� �
The full example code is available in the folder arrayASA in the ASX library.

4.4 Nesting of Composite Types

The flexible structure definitions can be nested to form a larger flexible struc-
ture. For this purpose, we use the FlexibleElement defined in Section 2
and the FlexElement defined in Section 4.3 and add one more component.� �
// AoS pattern: concise but restricted to AoS layout

struct Element {

struct{ Type1 c1; Type2 c2; Type3 c3; } comp1;

float comp2[ARR_SIZE];

int comp3;

};

typedef Element Container[CONT_SIZE];

11

// ASA pattern: a bit longer but handles both AoS and SoA

template <ASX::ID t_id= ASX::ID_value >

struct LargeFlex {

typedef ASX::ASAGroup <int ,t_id > ASX_ASA;

FlexibleElement <t_id > comp1;

FlexElement ::TTypeASA <t_id > comp2;

union{ int comp3; ASX_ASA dummy3; };

};

typedef LargeFlex <> Element;

typedef ASX::Array <LargeFlex , CONT_SIZE ,

ASX::AOS > Container; // ASX::SOA for an SoA container

Container container;

container [5]. comp1.comp3= 2; // OK, no change� �
Since the flexible structures already consist of component groups internally,
they are not embedded in a union; only the last component of native type
requires one.

Because the grouping size inside a flexible structure is hard-coded into
the ASX::ASAGroup<...> typedef, the nesting of flexible structures is only
possible if all their grouping sizes are the same. In the above example,
sizeof(Type1) is the grouping size of FlexibleElement from Section 2
and sizeof(float) is the grouping size of FlexElement from Section 4.3
so for the above code to function correctly these sizes must be equal. This
restriction could be removed by making the grouping size a template param-
eter of every flexible structure definition. But this would create considerable
additional code complexity for all cases in order to resolve few exceptional
cases of mismatched nested grouping sizes and therefore has not been im-
plemented.

The corresponding example in the ASX library is named nestingASA.

5 Final Evaluation

5.1 Performance

Memory access patterns are critical for performance, especially on the GPU
where caches are smaller. The data layout greatly influences the memory
access patterns and therefore the choice of AoS or SoA layout has a large

12

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06

B
an

dw
id

th
 in

 G
B

/s

Sampling Diameter

GTX480 Memory Performance from Linear to Random Access

SoA layout V-parallelism
AoS layout H-parallelism

AoS layout V-parallelism
SoA layout H-parallelism

Figure 1: Memory performance on two large containers in which each element con-
sists of four floats. Access patterns vary from linear element indexing on the left,
over increasingly irregular access in the middle, to a completely random permuta-
tion on the right. All four combinations of two data layouts (AoS and SoA) and two
parallelization strategies (horizontal and vertical) are presented. The mismatched
combinations (dashed lines) perform clearly worse. The matching combinations
(solid lines) differ by 3.7x on the left and 3.3x on the right, which demonstrates the
large speedups that can be gained by choosing the correct data layout.

impact on overall program performance. This section discusses how to make
the correct decision and reports on the resulting speedups.

For testing, we choose a kernel that performs a saxpy-type (scalar alpha X
plus Y) operation, however, alpha and the components of the containers X
and Y are not scalars but structures or short arrays themselves, therefore
gaxpy (general axpy) is a more appropriate name. This is a good candidate
to test the effective global memory performance for multi-valued containers
because it has no on-chip data reuse. The tests cover the full spectrum of
index access patterns from linear indexing to a random permutation. From
the linear index list 0, 1, . . . we create a permuted list by replacing index i
with a random j that fullfills |i− j| < d/2 for a chosen sampling diameter d.
By varying d we obtain access patterns of different irregularity and Figure 1

13

shows the results on a NVIDIA GeForce GTX 480 card in a 64-bit Linux
system running the g++-4.3.2 and nvcc-3.1 compilers.

A SoA layout is almost always parallelized vertically, i.e., multiple instances
of the same structure component are processed in parallel, whereas an AoS
layout is almost always parallelized horizontally, i.e., multiple components
of the same structure instance are processed in parallel. Figure 1 gives
quantitative support for these choices, because the less typical combinations,
shown as dashed lines, are clearly worse.

The comparison of the usual combinations, shown as solid lines, is dramatic.
The SoA layout is 3.7x faster on the regular patterns as they typically appear
in structured numerical simulations, but it loses by a similar factor of 3.3x on
the irregular patterns that are typical of statistical and database processing.
This clearly shows that one cannot rely on the same data layout for all
purposes. A tool is required that can quickly switch from one layout to the
other to find out which setting is best, and the ASX library provides exactly
this functionality.

In practice, the situation is even more complex, because different application
containers might require different data layouts. Up to now, finding the
best data layout for each container was infeasible, because changing the
syntax for even a single container from one layout to the other is very time
consuming and error-prone. With the ASX library, each container can be
easily configured to a different layout by setting a template parameter in the
class definition. This ensures that the best possible memory performance
can be obtained.

5.2 Related Work

AoS and SoA layouts are discussed in tutorials about SIMD processing for
various architectures, e.g., CPU [4], GPU [6] or the Cell processor [3]. They
advocate the use of SoA and vertical parallelism because this gives the fastest
processing in case of large, linearly indexed data sets. Hybrid formats that
adapt the data layout to the memory access granularity of the hardware
by grouping of instances or components result in arrays of structures of
arrays [1] or structures of arrays of structures [7] constructions, respectively.
Such application specific data layout optimizations appear in many high
performance codes, often leading to machine-specific code paths for the most
critical parts of a program. The contribution in this paper is an abstraction

14

that allows the selection of different data layouts within the same code. The
data layout can be changed at compile-time for each container.

A different approach is taken by Intel Array Building Blocks [5], which
keeps the original layout but performs a transformation on collections of
user defined structures into better-suited layouts at runtime. The library
Blitz++ [9] allows the specification of compile-time user-defined storage
orders for multi-dimensional arrays, which offers even more flexibility than
the usual choices of row-major or column-major storage, but this solution
does not apply to structures. Gou et al. [2] discuss related work and new
ideas concerning a hardware solution for better support of different data
layouts and strided memory access.

5.3 Limitations

Some limitations of the ASA abstraction remain; some are inherent to the
abstraction, others are induced by the programming language.

Algorithm The abstraction uses the AoS syntax for both data layouts.
An SoA layout that can be accessed with a single operator[] necessarily
requires a grouping of components (Section 4.2). So the abstraction does
not offer all the data arrangement options that are possible in standard SoA
code that uses multiple operator[]s for data access. However, in view of
the standard compiler alignment, this is not a big restriction in practice.
For example, a struct{short a; int b;} is padded by the compiler au-
tomatically as struct{short a, pad; int b;}, forming two groups short
a, pad and int b of the same size as required by ASA.

An abstraction integrated into the programming language would have a
smoother syntax and better checks on correctness, therefore a certain aware-
ness about data type sizes and their alignment is required from the program-
mer as can be seen in the examples of Sections 4.2 to 4.4.

Coding The abstraction aims at leaving the AoS code unchanged and en-
abling the flexible layout by simply changing the container definition. How-
ever, references to container elements must also be changed as discussed in
Section 4.1. Nonetheless, this is still much less effort (see e.g. the differ-
ences between the examples simpleAoS and simpleASA in the ASX library)

15

than changing a standard AoS code to a standard SoA code (see e.g. the
differences between the examples simpleAoS and simpleSoA).

There are some restrictions with respect to dynamic memory allocation on
the GPU. The statically sized ASX::Array can be used to allocate on-chip
shared memory in CUDA. The dynamically sized ASX::Vector can also
be stored in a previously statically allocated part of shared memory, but it
cannot be used for its allocation. Concerning global memory, CUDA Toolkit
3.2 supports dynamic allocation of global memory on NVIDIA Fermi-based
GPUs.

Performance The user-chosen grouping of components is hard-coded by
the placement of the unions. Optimization of the grouping size requires
code changes in the container definition. Luckily, the granularity of memory
access is given by the hardware manufacturers, so often it is not difficult
to choose the most efficient grouping size, e.g., selecting a size that avoids
bank conflicts in on-chip shared memory.

5.4 Benefits

Section 5.1 showed the performance benefits of choosing the correct data
layout. In theory, one could obtain these benefits manually, if one is willing
to write an exponential number of code variants that correspond to the
different assignments of data layouts to the containers: two choices for each
container, 2N code variants for N containers. Clearly, this is infeasible,
and the flexible ASA code improves the situation on all levels: algorithm
development, coding and performance:

Algorithm

• Algorithm development is independent of the data layout.
• Externally defined data layouts can be quickly integrated with new

algorithms.

Coding

• The more intuitive AoS syntax can be used throughout the code.
• The same template function can be used to update single elements and

indexed elements within a container.

16

Performance

• Performance of AoS vs. SoA for individual containers, groups of con-
tainers or the entire project can be evaluated rapidly by changing a
few template parameters.
• AoS vs. SoA comparison and optimization can be integrated into an

auto-tuning framework without the need for source code manipulation.

Acknowledgements

A big thank you goes to Cliff Woolley from NVIDIA for helping with the
organization of the paper.

References

[1] James Abel, Kumar Balasubramanian, Mike Bargeron, Tom Craver, and
Mike Phlipot. Applications tuning for streaming SIMD extensions. Tech-
nical report, Intel, 1999.

[2] Chunyang Gou, Georgi Kuzmanov, and Georgi N. Gaydadjiev. SAMS
multi-layout memory: providing multiple views of data to boost SIMD
performance. In ICS ’10: Proceedings of the 24th ACM International
Conference on Supercomputing, pages 49–59. ACM, 2010.

[3] IBM. Developing code for Cell - SIMD, 2006. http://-
publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/topic/-
com.ibm.iea.cbe/cbe/1.0/Programming/L3T2H1 37 DevelopingCode-
ForCellSIMD.pdf.

[4] Intel. A Guide to Vectorization with Intel C++ Compilers, 2010. http://-
software.intel.com/file/31848.

[5] Intel. Intel array building blocks. http://software.intel.com/en-us/-
articles/intel-array-building-blocks/, 2011.

[6] Brent Oster. Advanced CUDA tutorial. http://www.nvidia.com/-
content/cudazone/download/Advanced CUDA Training NVI-
SION08.pdf, 2008.

[7] Jakob Siegel, Juergen Ributzka, and Xiaoming Li. CUDA memory op-
timizations for large data-structures in the Gravit simulator. In Proc.

17

Workshop on Simulation and Modelling in Emergent Computational Sys-
tems (SMECS) at ICPP 2009, pages 174–181. IEEE Computer Society,
September 2009.

[8] Robert Strzodka. ASX (Array of Structs eXtended). http://www.mpi-
inf.mpg.de/%7Estrzodka/software/ASX/, 2010.

[9] Todd Veldhuizen. Blitz++ library. http://www.oonumerics.org/blitz/,
2006.

18

