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DIFFUSION MODELSAND THEIR ACCELERATED SOLUTION IN IMAGE AND
SURFACE PROCESSING

UDO DIEWALD , TOBIAS PREUSSER , MARTIN RUMPF , AND ROBERT STRZODKA*

Abstract. During the last decade nonlinear anisotropic diffusion models have shown to be powerful methods not
only in image processing. Moreover these methodologies can be adopted to other areas in computer vision. On the
level of the continuous model one can study the qualitative aspects and properties whereas approved discretization
schemes are at hand for an efficient implementation. In this paper we discuss several anisotropic diffusion methods
and outline a novel technique for geometric surface processing. Moreover we will show how the solution process
can be accelerated significantly by using texture hardware of modern graphics cards, making use of the much better
memory bandwidth and the built-in parallelism.
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1. Introduction. In the last decade PDE based models in the field of computer vision
and image analysis became very popular. Here we outline how these techniques can be gen-
eralized to surface processing and visualization purposes. Furthermore, we introduce a novel
concept for fast implementation of the underlying algorithms.

The nonlinear diffusion models as we know them today were first introduced by a work
of Perona and Malik [23], who introduced a model that allows for denoising of images while
retaining and enhancing edges. Analysis of the Perona Malik model showed its mathematical
ill-posedness [19, 35, 18], that drove the derivation of a regularized model by Catte et. al.
[7]. This still has the edge preserving property as long as the regularization parameter is
chosen appropriately. The so called scale space methods were later classified by a rigorous
axiomatic theory by Alvarez et. al. [2]. Recovering of lower dimensional structures was
analyzed by Weickert [31]. He considered an anisotropy depending on the so called structure
tensor of images, that steers a nonlinear diffusion process taking care of tangential and normal
directions on edges.

But the continuous diffusion models are not only limited to image processing. In [24]
PreuBer and Rumpf have adopted the nonlinear diffusion to visualization of vector fields — a
fundamental topic in scientific visualization. Clarenz, Diewald and Rumpf picked up the idea
of nonlinear diffusion and incorporated anisotropic surface smoothing that retains edges on
surfaces and whose diffusion tensor depends on the shape operator of the evolving surface
[8]. Their methodology also enables visualization of vector fields on surfaces [12]. All the
derived models profit from important properties from the original diffusion model in image
processing.

Finite element methods are widely spread to discretize the underlying partial differential
equations. Their convergence properties were first studied by Kacur and Mikula [17]. We-
ickert [31] proposed additive operator splitting techniques based on finite difference schemes
to accelerate the solution process. Also multigrid methods have been considered in the past
[1]. They allow for a good convergence as long as the anisotropic behavior of the diffusion
process is not too strong. The use of adaptive finite elements has been discussed in [4, 25].
Moreover parallel computing has been considered in e.g. [32].

An alternative to the parallelization in conventional hardware is the use of modern
graphics cards for computations. This has been extensively exploited in volume rendering
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[9, 34, 33] and more recently in filter applications [15, 16]. The advantages are mainly the
very fast memory access and inherently parallel processing of data. In this paper we show
how the graphics processor unit may be even used for the more complex task of solving lin-
ear systems of equations which arise in finite element schemes. This finally allows the whole
application to run solely on the graphics board.

The paper is organized as follows: In section 2 we review the general diffusion model in
image processing and show various applications and adaptations to computer vision in section
3. Here we revisit the model for visualization of vector fields on Euclidean domains and on
surfaces. An anisotropic parametric surface processing model and also a new geometric level
set method for geometric image smoothing will be presented. In section 4 we discretize
the diffusion models using finite elements. Finally we discuss the hardware acceleration in
section 5.

2. Diffusion Models in Image Processing. To begin with, let us briefly review the
standard nonlinear diffusion model in image processing. We consider images as functions on
a given domain © ¢ RR? having values in R™ with m € {1,2,3}. For gray value images
we clearly have m = 1, whereas the case m = 2, 3 corresponds to color images. Our image
domain Q ¢ R?, d € {2, 3} corresponds to 2D images in the case d = 2 and to 3D images
that are widespread in medical applications in the case d = 3. The basic nonlinear diffusion
problem then reads:

Find a function p : R¢ x Q — R™ which solves the parabolic problem

Owp — div(A(Vps)Vp) = f(p) in €,
p(0,-) = po on 99, (2.1)
A(Vp,)Vp-v=0 onR* x 99,

for given initial density po : @ — R™. Here p, = X, * p is a convolution of the current
density, which is necessary for the wellposedness of the above parabolic, boundary and initial
value problem (cf. [7]). The function f(-) may serve as a penalty which forces the solution
to stay close to the initial image, e. g. by choosing f(p) = ~v(po — p) where -y is a positive
constant. We regard the solution p(-) as a family of images {p(t)}te]Rg, where the time ¢
acts as a scale parameter. The parabolic equation can then be seen as a filter which for each
t € R delivers a filtered version p(t) of the original density p,.

So far we have not yet defined the nonlinear diffusion tensor A(Vp,) that steers the
evolution process. In the following sections we will define A(Vp, ) in different ways, leading
to the desired models. Replacing the diffusion tensor with the identity we would get the basic
heat equation model. Whereas setting A = G(||Vp.||), leads to the regularized Perona Malik
model with an edge indicator function G : R{ — R™. We suppose G to be a monotone
decreasing function chosen such that limy_,., G(d) = 0 and G(0) = 8 where 3 € R" is
constant, e. g. G(d) = W , with A > 0. As already mentioned above the convolution
avoids the non-wellposedness of the model. A widespread choice is the convolution with a
Gaussian kernel [7], which corresponds to the solution of the heat equation evaluated at a
corresponding short time. Figures 2.1 shows the application of a regularized Perona Malik
smoothing process in 2D.

In contrast to the nonlinear diffusion model presented so far another but purely mor-
phological model has become fundamental in image processing. It is based on simultaneous
evolution of all level sets M€ := {z € Q|p(t, z) = ¢} of an image by mean curvature motion

(cf. [3])

. Vp
Op — ||Vp|| div (—) =0. 2.2
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Fi1G. 2.1. Different scale steps of the Perona Malik evolution of a noisy image are being shown. From left to
right the noisy image, respectively the scale-steps 3, 7 and 10 are depicted.

. e. we consider the parabolic equation which is the level set variant of O,z = —H (z)N (),
where H(z) is the mean curvature and N(z) the normal to the levelset curve at a point
x. From differential geometry we know that for a distinct surface M := M¢ this surface
propagation is equivalent to solving

Oyx — Apzx = 0,

where A x4 denotes the Laplace Beltrami operator on a surface M and z is the identity on
M.

3. Applicationsin Computer Vision. In this section we will study various applications
for which we apply the diffusion models. We will first discuss the modification to anisotropic
diffusion in vector field visualization, and then carry over the multiscale concept to surface
processing. After the extension of the anisotropic diffusion to visualization of vector fields
on surfaces, we proceed to a new geometric level set method.

3.1. Vector Field Visualization on Euclidean Domains. The central goal in this area
of scientific visualization is to define methods that allow for an intuitive reception and give an
overall as well as detailed view of the underlying flow field. The simplest method of drawing
vector plots often leads to visual clutter, due to the different local scaling of the field within
the domain. Many other techniques have therefore been derived. For a detailed review of
related work we refer to [24, 8, 12].

We want to define a texture that represents the flow field globally on the spatial domain,
since single particle lines only very partially are capable of illuminating features of a complex
flow. Our method to be presented generates streamline like patterns and in addition carries
the possibility to successively coarsen those patterns. We base our method on the coher-
ence enhancing filters from [31] and furthermore pick up the line integral convolution (LIC)
approach as proposed by Cabral and Leedom [6] using the observation that the built in con-
volution along streamlines corresponds to solving the heat equation on the streamlines. The
desired coarsening will be steered by a Perona Malik type diffusion that acts in the orthogonal
direction. We consider Neumann boundary conditions as before on Section 2.

To be more precise, let v : © — R? be a given vector field, which we assume to be
continuous and non vanishing on Q. Clearly there exists a family of orthogonal mappings
B(z) : Q@ = SO(n) such that B(z)v(z) = eg, where {e;}i=o,... ,¢—1 i the standard basis in
R?. Hence, we consider a diffusion tensor A(v, Vp,) depending on the vector field v defined
by

A0y = B (W0 o ) B@:
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Here o : Rt — R™ controls the linear diffusion in vector field direction, i. e. along stream-
lines, and the above introduced edge enhancing diffusion coefficient G(-) acts in the orthog-
onal directions. In general, we choose « to be a constant function, but we may also select a
monotone function with a(0) > 0 and lim,— 00 @(s) = amax. We could run the evolution
with any image density as initial data po, but to avoid aliasing artefacts, we choose a random
noise of appropriate frequency range as initial data. During the evolution, patterns will diffuse
along the streamlines, but there is still some diffusion perpendicular to the flow field. This
supplies us with coarser representations of the flow field as the scale increases. Unfortunately,
if we run the evolution with a vanishing right hand side f, the contrast of the image density
will decrease, because of the linear diffusion along streamlines. Thus, we select a source term
f:[0,1] = R* satisfying

f(0)=f(1)=0, f<00n(0,05), f>00n(0.5,1), (3.1)

that pushes values towards zero and 1, respectively. Well known maximum principles ensure
that we do not enlarge the interval of gray values using this f. Choosing m € {2,3} in
the diffusion equation 2.1 provides additional asymptotic states of the process. We then
select the corresponding initial data randomly distributed within the cube [0,1]™, interpret
the components of p as color-components and define the force f to work on the luminance of
p. In figure 3.1 we have depicted a scale of vector field representations.

FiG. 3.1. From top left to bottom right four successive scale-steps of the anisotropic diffusion process are
depicted. The vector field visualized here results from a CFD computation, where a fluid flows from the inlet (black
circle) toward an outlet on the lower right corner.

3.2. A parametric surface processing model. In this section we will review a first
anisotropic diffusion model on parametric surfaces. This method extends the edge enhancing
diffusion filters from [31] to surfaces. Other contributions to PDE based smoothing on/of
surfaces have been made by [20, 10, 11].

To support the reading of the following sections, in Table 3.1 we have collected all nota-
tions used in the following. For the sake of simplicity let us assume our surfaces to be com-
pactly embedded manifolds in IR* without boundary. In case of noisy parametrized surfaces
M with parameterization xzo we can proceed in analogy to diffusion in image processing
and consider the corresponding anisotropic geometric evolution problem. This method first
presented in [8] is able to preserve important features such as edges and corners on the sur-
face and allows tangential smoothing along an edge but not in the direction perpendicular to
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TM Tangent bundle on M
T.M  Tangent space of M inz € M
g(-,-)  Metricon M

S Shape operator
S Regularized shape operator
S, Shape operator of a regularized image. (In general S, # S?)

S% a4 Shape operator acting on the tangent space of M inz € M
Normal of a surface respectively level set

N° Normal of a regularized surface respectively level set

DN Jacobian of the normal

Xm@y Manifold on which the differential operator X is defined
TaBLE3.1
Notations concerning geometric anisotropic diffusion.

it. The core of the method is diffusion that depends on the shape operator .S, which indicates
edges and corners by sufficiently large eigenvalues.

Because the evaluation of the shape operator on a noisy surface might be misleading
with respect to the original but unknown surface and its edges, we prefilter the current sur-
face M (t) by straightforward “geometric Gaussian” filtering. Hence, we compute a shape
operator S%. ,, on the resulting prefiltered surface M, (t), where o is the corresponding filter
width. Finally one obtains the following type of evolution problem:

Orr — divay(e) (a7 m Vm(®) = f-

Thereby, we define the diffusion tensor a%- ,, = a(S%. ,,) with respect to the orthonormal
basis of principal curvature directions on M, by

e« _ [ G 0
aT. M = 0 G(RQ"’) )

where G is the already introduced edge indicator function. Thus, diffusion on the surface
is significantly reduced in directions of high principle curvature, i. e. those perpendicular
to an edge. On the other hand, a larger diffusion coefficient in the edge direction enables
the tangential smoothing along the edge. The right hand side f of the considered evolution
problem can be chosen such that the volume enclosed by M is preserved (cf. [8]) or one can
select a simple retrieving force which avoids large deformations.

The evaluation of the shape operator will be based on an interpretation of the triangular
grids of the discrete manifold as a graph over the tangent plane. A succeeding L? projection
of the graph onto the quadratic polynomials enables the actual approximate evaluation of
the shape operator, whose eigenvectors and eigenvalues we pick up for the definition of the
diffusion tensor.

If we compare the new model with the anisotropic diffusion model in image processing
we see a strong analogy. The difference only consists in the interpretation of the operators
compared to the Euclidean case. Basically we have replaced Euclidean differential operators
by their geometric counterparts. The anisotropy in the new geometric model depends on
regularized curvatures, which are based on second derivatives, whereas the Euclidean model
considers a gradient based model. For a detailed description we refer the reader to [8].

As an example, in figure 3.2 we see the evolution of a noisy laser scan surface under the
anisotropic geometric diffusion method.
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Fi1G. 3.2. From left to right we have depicted four different scale steps of the anisotropic geometric evolution
of the Venus head. The surface representation was obtained by a laser scan with additionally added noise.

3.3. Vector Field Visualization on Surfaces. In section 3.1 we have reviewed an
anisotropic diffusion model for visualization of vector fields on domains that are subsets of
the two- and three-dimensional Euclidean space. In what follows we will briefly outline how
to carry over this concept to visualize vector fields on surfaces. The applications we show
here will focus on vector fields in differential geometry, i.e. principal directions of manifolds,
but the method is also applicable to results from meteorological computations or flow fields
on stream surfaces. In analogy to the diffusion equation in the Euclidean case, we now ask
for asolution p: R x M — R¢ of the parabolic equation

Op — divam(AV mp) = f(p)

on R x M for given initial data p(0, - ) = po on M. Here we suppose A to be some positive
definite symmetric endomorphism on 7 M. To represent a vector field v € T M we let w,
for a non vanishing v, be a vector orthogonal to v in the sense of the metric, i.e. g(v,w) = 0,
and then define with respect to the basis {v, w} of 7, M the diffusion tensor A as before in
the Euclidean case

_ (el 0
A(v,Vp,) = ( 0 G(IVpsl) ) '

For the right hand side f(-), we take the function defined by (3.1) in section 3.1 and again
assume po to be a random noise, either scalar or vector valued, but now on the surface M.
As an example in figure 3.3 we have depicted the principal directions of curvature of Costa’s
surface.

FiG. 3.3. We depict the visualization of the principal directions of curvature of Costa’s surface using the
anisotropic diffusion method on surfaces.
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3.4. A Level Set Method for Geometric Image Smoothing. The parametric surface
processing model described in section 3.2 is a well suited approach to edge preserving surface
smoothing. One disadvantage, however, is the dependence upon a parameterization of the
surface that makes it enormously difficult to apply the method to e.g. the isosurfaces of
medical data, where parametrizations of the isosurfaces are not known. A modification of
MCM was proposed by Sapiro [28] who considered so called self-snakes, which are steered
by a coefficient depends on the image gradient. Here we present a level set approach which
in addition comes along with the feature that ellipsoidal level sets remain invariant under the
evolution [26].

As already described in section 3.2 an edge feature is characterized by a small curvature
in tangential direction along the feature and a sufficiently large curvature in the perpendicular
direction in the tangent space. Let us assume &' < &2 to be the principal curvatures and
denote by v' and v? the corresponding principal directions of curvature. Hence we consider
an anisotropic diffusion tensor depending on the shape operator extended to R*: S := DN.
Thereby the diffusion tensor is supposed to significantly decrease the diffusion in the dom-
inant curvature direction v2, whereas a fixed diffusion is prescribed in the subdominant v*
direction. This distinction will again be made via a function G applied to the principle curva-
tures k!, k2.

Again the evaluation of the shape operator S on a level set of a noisy image might be
misleading with respect to the true but unknown level sets and edges. E. g. noise might be
identified as features. Thus we have to consider a regularization and prefilter the current im-
age p(t, -), which leads to a regularized shape operator S°. Either we consider an appropriate
“morphological” filter which is a short timestep of the level set evolution by mean curvature,
or alternatively we base it on a least square approximation of the true local level set in a
suitable finite dimensional space of smooth functions and compute the shape operator on the
corresponding level set. A third choice would be the convolution of the image p(t, -) with a
Gaussian kernel (cf. [7]).

We end up with the following type of nonlinear parabolic problem. Given an initial
3D image po on in €2, we ask for a scale of images {p(t, -) }+>0 which obey the anisotropic
geometric evolution equation:

Op — ||Vpl| div (A(S") ”gﬁ) =0 onRt x Q,
p(0,-) = po(:) on g,
A(S°)Vp-v=0 onR* x 89,

where v is the outer normal to 9Q. A(S7) is supposed to be a symmetric, positive definite,
linear endomorphism on IR?, which cares about the preservation of edges and the tangential
smoothing along edges. Thus we define

G(k!7)
A(S°) = BT G(k*7) B, .
0

Here B, € SO(3) denotes the basis transformation from the regularized frame of principal
directions of curvature and the normal {v':?, v, N°} onto the canonical basis {e1, e2, e3}.

The underlying evolution turns out to be equivalent to the propagation of the level sets
Me(t) with speed f in normal direction N, i. e. 9;z = f N with

[=1tr(A(S7)(Ss — 5)) + (div A(S))(N? — N),
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because (using the abbreviation a” := A(S7)) we have

div(a” N) = (div a”)N + tr(a® DN)
= (div a®)N? + (diva®)(N — N?) + tr(a®S)
=div(a®N?) — tr(a” DN?) + (div a”)(N — N?) + tr(a’S)
=0—tr(a’Sy) + (diva’?)(N — N7) + tr(a’S) .

Here we define S, := DN?, where N7 is the normal of the regularized image. Clearly
S, coincides with the regularized shape operator S if we evaluate S on the level sets of a
globally prefiltered image. But evaluating S¢ separately for each point z € €2 on a locally
regularized level set surface leads in general to S7 # S,,.

For noisy images we expect tr(A(S?)(S, — S)) to be the dominant term in the propa-
gation speed, since in general for z € 2

155 (z) = S(@)|| > [|N(z) = N7 (2)]-

This enables us to characterize the behavior of the anisotropic level set method. It is mainly
driven by the difference of a regularized shape operator and the true shape operator weighted
by the anisotropic weights given by the diffusion tensor. Furthermore, we verify that the
propagation speed f vanishes if the regularization S, coincides with the original S, which
gives reason for the invariance property stated above.

In our model above we have made extensive use of a regularized shape operator, on
which we base the computation of the anisotropic diffusion tensor. \Whatever process we
apply to locally or globally regularize the image intensities, we have to define a discrete
shape operator on level sets described by finite element functions. As long as we do not use
at least quadratic elements even a definition — without thinking of the consistency problem
— remains an open question [29]. Since typical image discretizations are based on trilinear
interpolation of pixel or voxel values, we consider the second regularization variant, which
is based on a local L? projection. Unfortunately this regularization defined in the sequel is
not guaranteed to be invariant under gray value transformations. Nevertheless we expect the
corresponding regularized shape operator to depend essentially only on the morphology of
the local image.

We base the local regularization on a least squares fit of the image p onto a subspace of
the polynomials P». To this end let us fix a point z € Q and denote by Q the subspace of
P, that does not contain constant functions. It is not necessary to consider constant functions
in Q since we can locally shift the image p such that p(z) = 0. The local L? projection
II, -p € Q of the intensity p onto Q is then defined by the orthogonality

(p—Izop) g=0 Vge Q,
Bs(z)

where B, (x) is a small neighborhood of z. For the ease of presentation we write p? instead
of T, , p for a fixed 2 € Q. Now we define the shape operator S, := Dllg%”, which is

symmetric and therefore is characterized by its real eigenvalues 0 and 77, j = 1,2 and the
eigenvectors { N7, v1:7 %7 }. In general we have S, # S°. For a more detailed description
of the model, the regularization and a discussion of the implementation we refer to [26].

In figure 3.4 we see the evolution of a noisy echocardiographical data set and in figure
3.5 we have compared the new anisotropic level set method with other well known techniques
(cf. [21, 14]).
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Fi1G. 3.4. From left to right we depict a noisy echocardiographical data set of the left ventricle of the human
heart and three scale steps of the new anisotropic level set method applied to that initial data.

Fi1G. 3.5. The results of the isotropic Perona Malik diffusion (left), anisotropic Perona Malik diffusion [31]
(middle) and mean curvature motion (right) applied to the noisy data set from figure 3.4 are shown. The new
geometric diffusion clearly retains most of the edges and preserves the volume best.

4. Finite Element Discretization. In what follows, we discuss the discretization and
implementation of the nonlinear diffusion methods. We will focus on domains in 2D and 3D
Euclidean space and refer to [8, 12] for a detailed description of a discretization on manifolds.

Let us first look at the discretization of the anisotropic diffusion. The variational formu-
lation of the diffusion problem 2.1 is obviously given by

(6tp= 0) + (A(’U, VPU)VP, Va) = (fa 0)7

for all § € C*°(Q), where (.,.) denotes the L? product on the domain . We consider a
finite element discretization and a semi implicit backward Euler scheme in time. Here we
have restricted ourselves to regular grids in 2D and 3D generated by recursive subdivision.
On these grids we consider bilinear, respectively trilinear finite element spaces. Numerical
integration is based on the lumped masses product (-, -)"® [30] which approximates the L2
product (-,-) in the variational formulation and a one point quadrature rule for the bilinear
form (AV -,V -). The semi-implicit character of the scheme results in the evaluation of the
nonlinearity A(-) and the right hand side at the old time. So finally, we have to solve a
system of linear equations in each timestep of the discrete evolution. For the backward Euler
discretization, we obtain

(Mn+TL"(An))ﬁn+1 :Mnﬁn-l-TMnan.

Here p"™ = (p}); denotes the vector of nodal intensity values at time ¢ = nr, where 7 is
the selected timestep size. Furthermore, if we consider the “hat shaped” multilinear basis
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functions ®; and assume A™ to represent the diffusion tensor with respect to the discrete
intensity at time ¢,

M" = ((q>i,<1>j)h)z.j and L"(A") := ((A"V®;, V),
are the lumped mass matrix and stiffness matrix respectively. Finally, the components of the
right hand side f™ are evaluated by (f™); = f(pI").

In each timestep the computation of the prefiltered intensity vector p? is based on a
single implicit timestep of size o2 /2 for the corresponding discrete heat equation scheme
with respect to initial data p™.

To discretize the anisotropic level set method, we regularize the variational formulation,

since in general we cannot guarantee that Vp # 0 (cf. [13]). Thereby, we work with the
variational formulation

Oip - Vp _
( Vol +e2’0> : (A(S T +e2’w> -° 0

for e > 0 and for all test functions 8 € C>°(2) and proceed as described above.

In our implementation the regular grids are procedurally interpreted as quadtrees, respec-
tively octtrees. Finally no matrix is explicitly stored. The necessary matrix multiplications in
the applied iterative solver are performed in successive tree traverses. Hierarchical BPX type
[5] preconditioning is used to accelerate the convergence of the linear solver. Furthermore
the code is prepared to incorporate spatial grid adaptivity if possible [25].

5. Hardware Accelerated Solvers. Numerical computations in graphics hardware are
only slightly different from those of a computer. Graphics cards also consist of a central
processor, the graphics processor unit (GPU), and memory, typically called texture memory.
(The structure of some graphics cards does not exactly fit this simple scheme). The perfor-
mance of nowadays standard CPUs and GPUs are comparable, whereas the texture memory
offers a significantly higher bandwidth than the main memory of a computer. The main differ-
ence in computing is that the commands to be executed are not listed in the texture memory,
but still in the main memory of the PC, only the operands are in the texture memory. For
example to perform an addition, the corresponding command is sent to the GPU, which then
gets the operands from the texture memory, processes them and writes the result back to the
texture memory. We should think of the operands as large data blocks, e.g. entire images,
because only then the advantages of the graphics cards can be fully exploited. For the exe-
cution of the pixelwise addition of two entire images the GPU namely needs only very few
commands, the access to the operands is very fast, and the operation is performed in parallel
on several components.

While using graphics hardware for computations there are two important issues which
we must pay attention to. First, the number formats supported by the GPU offer only the
range [0, 1], which is suitable for the representation of intensities. As usually our computation
will require a bigger range, we have to encode are numbers appropriately and perform any
operations compliantly to the encoding. Second, the resolution of numbers in the GPU offers
at most 12 bit per color component. Therefore the algorithm should be designed with the
intention of reducing the necessary interval of numbers, because any extension of it leads
through the encoding to a decrease in precision.

We will now consider the regularized Perona Malik model reviewed in section 2. In
section 4 we have seen that after appropriate discretization in space and time we have to solve
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the following system of equations: (M™+7L"(pR))p" ! = M"p"™ +7M™ f" . If we rescale
the above equation to reference finite elements we obtain

T

(I+ o

L)) 5+t =g + 77 (")
—_——
A" ﬁn—i-l — Rn
Now, let us consider a simple iterative solver, like the Jacobi solver

F(X)=D'(R— (A-D)X), D :=diag(A),

and think of the operations needed to implement it in graphics hardware. The GPU provides
operations for the componentwise addition and multiplication as well as for the application of
one argument functions (D), but we cannot implement the matrix vector product straight
forward. Instead we consider a splitting of operations and observe the following:

(Lem), , = (VeI vEa, vés)

> GV (Valm, Vosln)

EcE(a)

>, &80,

E€E(a)

where E(a) is the set of elements around the node o, G% := G(||Vp2||)| 5 is the constant
value of the diffusion coefficient on such an element and S#— .= (Vi)ahg, V&[3|E) is a

constant depending only on the index offset 8 — a, provided we deal with equidistant meshes.
Then applying L(p?) to an arbitrary vector X results in:

(Lenx) = ; E;(a) GpSP X

= Y GEY S Xy

E€E(a) ¥

Here it is convenient to look upon « and S as 2 or 3 dimensional multi-indices, enumerating
the nodes of the 2 or 3 dimensional grid respectively. Then v := 8 — a is the spatial offset
from node « to node 8. Hence the inner sum represents a weighted sum of neighboring
node values, where the weights S” are independent of the local position «. This discrete
convolution with constant weights is directly supported by some GPUs. If not available, one
can simulate it by adding shifted and weighted copies of X. For the underlying quadtree or
octtree and linear basis functions @, the index offset -y satisfies |y| < d, if | - | indicates the
1-norm on R¢, in other words the stencil of the convolution filter is a 3 by 3 (by 3) matrix.
Finally the multiplication with G7% is simply a componentwise multiplication with the vector
Gn = (G%)E

Consequently, we list the operations required for the implementation of the Jacobi solver
and their counterparts in graphics hardware using the OpenGL API [22]:

Figure 5.1 shows computations on the InfiniteReality2 graphics system of a SGI Onyx2
applied to the same noisy image as in figure 2.1. Unlike many others, this graphics system
offers display modes with 12 bit per color component, which enhances the accuracy of the
calculations. We see that this precision is sufficient for the task of denoising pictures by
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operation OpenGL

componentwise linear combination blending function

componentwise multiplication blending function

componentwise function of one argument  lookup table

convolution convolution extension
TABLES.1

OpenGL functionality corresponding to vector operations.

F1G. 5.1. Nonlinear diffusion in graphics hardware (cf. figure 2.1).

nonlinear diffusion models. Certainly the images produced by hardware and software vary,
but the overall effect of the image seems very much the same for our visual perception, which
is the decisive factor in this application.

The performance of the InfiniteReality2 system of about 17sec for the computation of 10
timesteps a 10 Jacobi iterations which lead to the 2562 images in figure 5.1 is rather weak in
this setting. This is because our algorithm strongly depends on a fast texture loading from the
framebuffer, but in the time when the InfiniteReality2 graphics emerged, the graphics pipeline
has only been optimized for drawing textured images into the framebuffer.

An implementation on the modern ELSA Gladiac Ultra PC graphics card powered by
NVIDIA’s GeForce2 Ultra chip runs through the 10 Jacobi iterations of a timestep in just
0.1sec. Here also the inverse path from the framebuffer to the texture memory has been
optimized, eliminating the afore mentioned bottleneck. The lower resolution of only 8 bits
per color component, however, poses additional difficulties in bounding the computational
error and thus reconstructing the qualitative behavior of the analytical model.

Fortunately, the development of PC graphics hardware tends towards higher precision
formats with up to 16 bits per component, such that in future even more precision sensitive
algorithms will permit graphics hardware implementations. Moreover, performance is still
very likely to rise by factors, because currently certain restrictions and unoptimized paths in
the graphics pipeline enforce time consuming computational detours.

In this section we have outlined the implementation of the regularized Perona Malik
model in graphics hardware. The availability of the basic vector operations and the refor-
mulation of the sparse matrix vector product in graphics hardware, however, also allow the
implementation of more complex models like these from sections 3.1 and 3.4. Generally
speaking, the array of applications feasibly implementable in graphics hardware is restricted
by the precision requirements and the homogeneity of the processed data. An example for the
graphics hardware implementation of a different model than the nonlinear diffusion has been
discussed in [27]. There, we have implemented an explicit solver for the levelset equation,
and use it for the segmentation of images.
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6. Conclusions. We have seen a wide range of applications for the nonlinear diffusion
models, ranging from denoising techniques to vector field visualization. In either case we
could experience the advantage of a multiscale of solutions which allows to choose the ap-
propriate coarsening scale for the application. Concerning the implementation we have pro-
posed a software and a hardware solution. The software solution uses hierarchical adaptivity
and fast solvers for optimal performance with minimum memory requirements, whereas the
hardware solution operates on equidistant meshes, but benefits from the higher memory band-
width of the graphics hardware and its intrinsic parallelization. Both approaches have their
pros and cons. The software solution guaranties high precision, very good scalability and
implementational flexibility, but lacks ultimate performance. The graphics hardware, on the
other hand, frees the CPU for other computations and still offers supreme performance, but
lacks high precision and flexibility. Depending on the application, choosing the appropriate
approach or a combination of both will lead to satisfactory results.
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